Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition

نویسنده

  • Yuri B. Saalmann
چکیده

The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline thalamic nuclei connect with medial prefrontal cortex and medial temporal lobe. Taking into account this connectivity pattern, it is not surprising that the intralaminar and medial thalamus has been implicated in a variety of cognitive functions, including memory processing, attention and orienting, as well as reward-based behavior. This review addresses how the intralaminar and medial thalamus may regulate information transmission in cortical circuits. A key neural mechanism may involve intralaminar and medial thalamic neurons modulating the degree of synchrony between different groups of cortical neurons according to behavioral demands. Such a thalamic-mediated synchronization mechanism may give rise to large-scale integration of information across multiple cortical circuits, consequently influencing the level of arousal and consciousness. Overall, the growing evidence supports a general role for the higher-order thalamus in the control of cortical information transmission and cognitive processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thalamic nuclei adjacent to the medial geniculate body play a pivotal role in processing of sensory stimuli

role in processing of sensory stimuli during emotional situations. These nuclei, which include the suprageniculate nucleus (SG), the posterior intralaminar nucleus (PIN), the peripeduncular nucleus (PP) and the medial division of the medial geniculate body (MGm), project to both cortex and amygdala, but target areas and the extent of the projection of individual nuclei are not known yet. The ai...

متن کامل

Schizophrenia, hypocretin (orexin), and the thalamocortical activating system.

Diminished connectivity between midline-intralaminar thalamic nuclei and prefrontal cortex has been suggested to contribute to cognitive deficits that are detectable even in early stages of schizophrenia. The midline-intralaminar relay cells comprise the final link in the ascending arousal pathway and are selectively excited by the wake-promoting peptides hypocretin 1 and 2 (orexin A and B). Th...

متن کامل

Serotonergic fibers distribution in the midline and intralaminar thalamic nuclei in the rock cavy (Kerodon rupestris)

The thalamic midline/intralaminar complex is part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The midline thalamic nuclei connect with the medial prefrontal cortex and the medial temporal lobe. On the other hand, the intralaminar nuclei connect with the fronto-parietal cortex. Taking into account this connecti...

متن کامل

The cognitive thalamus

The thalamus, once viewed as passively relaying sensory information to the cerebral cortex, is becoming increasingly acknowledged as actively regulating the information transmitted to corti-cal areas. There are a number of reasons for this change. First, evidence suggests that first-order thalamic areas, like the lateral geniculate nucleus, ventral division of the medial geniculate nucleus, and...

متن کامل

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014